
DBMS Chapter Three IS304

 1

Database Normalization-Comp.

Contents

4. Boyce Codd Normal Form (BCNF)

5. Fourth Normal Form (4NF)

6. Fifth Normal Form (5NF)

7. Sixth Normal Form (6NF)

DBMS Chapter Three IS304

 2

4. Boyce Codd Normal Form (BCNF)

In the first part of chapter three, we demonstrated how 2NF and 3NF disallow

partial and transitive dependencies on the primary key of a relation, respectively.

Relations that have these types of dependencies may suffer from the update

anomalies.

However, the definition of 2NF and 3NF, respectively, do not consider whether

such dependencies remain on other candidate keys of a relation, if any exist. Later

we presented general definitions for 2NF and 3NF that disallow partial and

transitive dependencies on any candidate key of a relation, respectively.

Application of the general definitions of 2NF and 3NF may identify additional

redundancy caused by dependencies that violate one or more candidate keys.

However, despite these additional constraints, dependencies can still exist that will

cause redundancy to be present in 3NF relations. This weakness in 3NF, resulted in

the presentation of a stronger normal form called Boyce–Codd Normal Form

(Codd, 1974).

BCNF A relation is in BCNF, if and only if, every determinant is a

candidate key.

To test whether a relation is in BCNF, we identify all the determinants and make

sure that they are candidate keys. Recall that a determinant is an attribute, or a

group of attributes, on which some other attribute is fully functionally dependent.

The difference between 3NF and BCNF is that for a functional dependency A→B,

3NF allows this dependency in a relation if B is a primary-key attribute and A is

not a candidate key, whereas BCNF insists that for this dependency to remain in a

relation, A must be a candidate key. Therefore, Boyce–Codd Normal Form is a

stronger form of 3NF, such that every relation in BCNF is also in 3NF. However, a

relation in 3NF is not necessarily in BCNF.

DBMS Chapter Three IS304

 3

Example: Suppose you have the following table:

The ClientInterview relation has three candidate keys: (clientNo, interviewDate),

(staffNo,interviewDate, interviewTime), and (roomNo, interviewDate,

interviewTime). Therefore the ClientInterview relation has three composite

candidate keys, which overlap by sharing the common attribute interviewDate. We

select (clientNo, interviewDate) to act as the primary key for this relation. The

ClientInterview relation has the following form:

ClientInterview (clientNo, interviewDate, interviewTime, staffNo, roomNo)

However, this relation is not in BCNF (a stronger normal form of 3NF) due to the

presence of the (staffNo, interviewDate) determinant, which is not a candidate key

for the relation. BCNF requires that all determinants in a relation must be a

candidate key for the relation. As a consequence the ClientInterview relation may

suffer from update anomalies.

DBMS Chapter Three IS304

 4

For example, to change the room number for staff number SG5 on the 13-May-05

we must update two tuples. If only one tuple is updated with the new room

number, this results in an inconsistent state for the database.

To transform the ClientInterview relation to BCNF, we must remove the violating

functional dependency by creating two new relations called Interview and

StaffRoom, as shown:

We can decompose any relation that is not in BCNF into BCNF as illustrated.

However, it may not always be desirable to transform a relation into BCNF; for

example, if there is a functional dependency that is not preserved when we perform

the decomposition (that is, the determinant and the attributes it determines are

placed in different relations). In this situation, it is difficult to enforce the

functional dependency in the relation, and an important constraint is lost. When

this occurs, it may be better to stop at 3NF, which always preserves dependencies.

DBMS Chapter Three IS304

 5

Note in Example, in creating the two BCNF relations from the original

ClientInterview relation, we have ‘lost’ the functional dependency,

 roomNo,interviewDate, interviewTime → staffNo, clientNo (represented as fd3),

as the determinant for this dependency is no longer in the same relation. However,

we must recognize that if the functional dependency,

staffNo, interviewDate→roomNo (represented as fd4)

is not removed, the ClientInterview relation will have data redundancy. The

decision as to whether it is better to stop the normalization at 3NF or progress to

BCNF is dependent on the amount of redundancy resulting from the presence of

fd4 and the significance of the ‘loss’ of fd3. For example, if it is the case that

members of staff conduct only one interview per day, then the presence of fd4 in

the ClientInterview relation will not cause redundancy and therefore the

decomposition of this relation into two BCNF relations is not helpful or necessary.

On the other hand, if members of staff conduct numerous interviews per day, then

the presence of fd4 in the ClientInterview relation will cause redundancy and

normalization of this relation to BCNF is recommended. However, we should also

consider the significance of losing fd3; in other words, does fd3 convey important

information about client interviews that must be represented in one of the resulting

relations? The answer to this question will help to determine whether it is better to

retain all functional dependencies or remove data redundancy.

DBMS Chapter Three IS304

 6

Example: convert the following table into BCNF:

First Normal Form (1NF)

We first transfer sample data held on two property inspection reports into table

format with rows and columns. This is referred to as the StaffPropertyInspection

unnormalized table and is shown in the previous table. We identify the key

attribute for this unnormalized table as propertyNo. We identify the repeating

group in the unnormalized table as the property inspection and staff details, which

repeats for each property. The structure of the repeating group is:

Repeating Group = (iDate, iTime, comments, staffNo, sName, carReg)

DBMS Chapter Three IS304

 7

Second Normal Form (2NF):

The normalization of 1NF relations to 2NF involves the removal of partial

dependencies on the primary key. If a partial dependency exists, we remove the

functionally dependent attributes from the relation by placing them in a new

relation with a copy of their determinant.

Using the functional dependencies, we continue the process of normalizing the

StaffPropertyInspection relation. We begin by testing whether the relation is in

2NF by identifying the presence of any partial dependencies on the primary key.

We note that the property attribute (pAddress) is partially dependent on part of the

primary key, namely the propertyNo (represented as fd2), whereas the remaining

attributes (iTime, comments, staffNo, sName, and carReg) are fully dependent on

the whole primary key (propertyNo and iDate), (represented as fd1). Note that

although the determinant of the functional dependency

 staffNo, iDate → carReg (represented as fd4) only requires the iDate attribute of

the primary key, we do not remove this dependency at this stage as the determinant

also includes another non-primary-key attribute, namely staffNo. In other words,

this dependency is not wholly dependent on part of the primary key and therefore

does not violate 2NF.

DBMS Chapter Three IS304

 8

The identification of the partial dependency (propertyNo → pAddress) indicates

that the StaffPropertyInspection relation is not in 2NF. To transform the relation

into 2NF requires the creation of new relations so that the attributes that are not

fully dependent on the primary key are associated with only the appropriate part of

the key. The StaffPropertyInspection relation is transformed into second normal

form by removing the partial dependency from the relation and creating two new

relations called Property and PropertyInspection with the following form:

Property (propertyNo, pAddress)

PropertyInspection (propertyNo, iDate, iTime, comments, staffNo, sName, carReg)

These relations are in 2NF, as every non-primary-key attribute is functionally

dependent on the primary key of the relation.

Third Normal Form (3NF):

The normalization of 2NF relations to 3NF involves the removal of transitive

dependencies. If a transitive dependency exists, we remove the transitively

dependent attributes from the relation by placing them in a new relation along with

a copy of their determinant. The functional dependencies within the Property and

PropertyInspection relations are as follows:

DBMS Chapter Three IS304

 9

As the Property relation does not have transitive dependencies on the primary key,

It is therefore already in 3NF. However, although all the non-primary-key

attributes within the PropertyInspection relation are functionally dependent on

the primary key, sName is also transitively dependent on staffNo (represented as

fd3). We also note the functional dependency

staffNo, iDate → carReg (represented as fd4) has a non-primary-key attribute

carReg partially dependent on a non-primary-key attribute, staffNo. We do not

remove this dependency at this stage as part of the determinant for this dependency

includes a primarykey attribute, namely iDate. In other words, this dependency is

not wholly transitively dependent on non-primary-key attributes and therefore does

not violate 3NF.

(In other words, when considering all candidate keys of a relation, the

staffNo, iDate → carReg dependency is allowed in 3NF because carReg is a

primarykey attribute as it is part of the candidate key (carReg, iDate, iTime) of the

original PropertyInspection relation.)

To transform the PropertyInspection relation into 3NF, we remove the transitive

dependency (staffNo→sName) by creating two new relations called Staff and

PropertyInspect with the form:

Staff (staffNo, sName)

PropertyInspect (propertyNo, iDate, iTime, comments, staffNo, carReg)

The Staff and PropertyInspect relations are in 3NF as no non-primary-key

attribute is wholly functionally dependent on another non-primary-key attribute.

Thus, the StaffPropertyInspection relation has been transformed by the process

of normalization into three relations in 3NF with the following form:

Property (propertyNo, pAddress)

Staff (staffNo, sName)

PropertyInspect (propertyNo, iDate, iTime, comments, staffNo, carReg)

DBMS Chapter Three IS304

 10

Boyce–Codd Normal Form (BCNF):

We now examine the Property, Staff, and PropertyInspect relations to determine

whether they are in BCNF. Recall that a relation is in BCNF if every determinant

of a relation is a candidate key. Therefore, to test for BCNF, we simply identify all

the determinants and make sure they are candidate keys.The functional

dependencies for the Property, Staff, and PropertyInspect relations are as follows:

We can see that the Property and Staff relations are already in BCNF as the

determinant in each of these relations is also the candidate key. The only 3NF

relation that is not in BCNF is PropertyInspect because of the presence of the

determinant (staffNo, iDate), which is not a candidate key (represented as fd4). As

a consequence the PropertyInspect relation may suffer from update anomalies. For

example, to change the car allocated to staff number SG14 on the 22-Apr-03, we

must update two tuples. If only one tuple is updated with the new car registration

number, this results in an inconsistent state for the database.

To transform the PropertyInspect relation into BCNF, we must remove the

dependency that violates BCNF by creating two new relations called StaffCar and

Inspection with the form:

StaffCar (staffNo, iDate, carReg)

Inspection (propertyNo, iDate, iTime, comments, staffNo)

DBMS Chapter Three IS304

 11

The StaffCar and Inspection relations are in BCNF as the determinant in each of

these relations is also a candidate key.

5. Fourth Normal Form (4NF)

Although BCNF removes any anomalies due to functional dependencies, further

research led to the identification of another type of dependency called a Multi-

Valued Dependency (MVD), which can also cause data redundancy (Fagin,

1977). In this section, we briefly describe a multi-valued dependency and the

association of this type of dependency with Fourth Normal Form (4NF).

The possible existence of multi-valued dependencies in a relation is due to First

Normal Form, which disallows an attribute in a tuple from having a set of values.

For example, if we have two multi-valued attributes in a relation, we have to repeat

each value of one of the attributes with every value of the other attribute, to ensure

that tuples of the relation are consistent. This type of constraint is referred to as a

multi-valued dependency and results in data redundancy.

DBMS Chapter Three IS304

 12

Consider the BranchStaffOwner relation shown in Figure, which displays the

names of members of staff (sName) and property owners (oName) at each

branch office (branchNo). In this example, assume that staff name (sName)

uniquely identifies each member of staff and that the owner name (oName)

uniquely identifies each owner.

Multi-Valued Dependency (MVD) Represents a dependency between attributes

(for example, A, B, and C) in a relation, such that for each value of A there is a set

of values for B and a set of values for C. However, the set of values for B and C

are independent of each other. We represent a MVD between attributes A, B, and

C in a relation using the following notation:

A ⎯>> B

A ⎯>> C

For example, we specify the MVD in the BranchStaffOwner relation shown in

Figure shows:

branchNo ⎯>> sName

branchNo ⎯>> oName

Even though the BranchStaffOwner relation is in BCNF, the relation remains

poorly structured, due to the data redundancy caused by the presence of the

DBMS Chapter Three IS304

 13

nontrivial MVD. We clearly require a stronger form of BCNF that prevents

relational structures such as the BranchStaffOwner relation.

6. Fifth Normal Form (5NF)

Whenever we decompose a relation into two relations the resulting relations have

the lossless-join property. This property refers to the fact that we can rejoin the

resulting relations to produce the original relation. However, there are cases were

there is the requirement to decompose a relation into more than two relations.

Although rare, these cases are managed by join dependency and Fifth Normal

Form (5NF).

In this section we briefly describe the lossless-join dependency and the association

with 5NF.

Lossless-join dependency A property of decomposition, which ensures that no

spurious tuples are generated when relations are reunited through a natural join

operation.

In splitting relations by projection, we are very explicit about the method of

decomposition. In particular, we are careful to use projections that can be reversed

by joining the resulting relations, so that the original relation is reconstructed. Such

a decomposition is called a lossless-join (also called a nonloss- or nonadditive-

join) decomposition, because it preserves all the data in the original relation and

does not result in the creation of additional spurious tuples. For example, Figures

DBMS Chapter Three IS304

 14

(a) and (b) show that the decomposition of the BranchStaffOwner relation into

the BranchStaff and BranchOwner relations has the lossless-join property.

In other words, the original BranchStaffOwner relation can be reconstructed by

performing a natural join operation on the BranchStaff and BranchOwner relations.

In this example, the original relation is decomposed into two relations. However,

there are cases were we require to perform a lossless-join decompose of a relation

into more than two relations (Aho et al., 1979). These cases are the focus of the

lossless-join dependency and Fifth Normal Form (5NF).

Join dependency Describes a type of dependency. For example, for a relation R

with subsets of the attributes of R denoted as A, B, . . . , Z, a relation R satisfies a

join dependency if and only if every legal value of R is equal to the join of its

projections on A, B, . . . , Z.

Example: suppose you have the following relation:

DBMS Chapter Three IS304

 15

In above table, Rose takes both Mathematics and Physics class for Semester 1, but

she does not take Physics class for Semester 2. In this case, combination of all

these 3 fields is required to identify a valid data. Imagine we want to add a new

class - Semester3 but do not know which Subject and who will be taking that

subject. We would be simply inserting a new entry with Class as Semester3 and

leaving Lecturer and subject as NULL. As we discussed above, it's not a good to

have such entries. Moreover, all the three columns together act as a primary key,

we cannot leave other two columns blank!

Hence we have to decompose the table in such a way that it satisfies all the rules

till 4NF and when join them by using keys, it should yield correct record. Here, we

can represent each lecturer's Subject area and their classes in a better way. We can

divide above table into three - (SUBJECT, LECTURER), (LECTURER, CLASS),

(SUBJECT, CLASS).

DBMS Chapter Three IS304

 16

7. Sixth Normal Form (6NF)

In order for a table to be in 6NF, it has to comply with the 5NF first and then it

requires that each table satisfies only trivial join dependencies.

The sixth normal form is currently being used in some data warehouses where the

benefits outweigh the drawbacks,

for example using Anchor Modeling. Although

using 6NF leads to an explosion of tables, modern databases can prune the tables

from select queries (using a process called 'table elimination') where they are not

required and thus speed up queries that only access several attributes.

Trivial Dependency: If an FD X → Y holds where Y subset of X, then it is called

a trivial FD. Trivial FDs are always hold.

https://en.wikipedia.org/wiki/Data_warehouse
https://en.wikipedia.org/wiki/Anchor_Modeling

